2x^2-5=41/2

Simple and best practice solution for 2x^2-5=41/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-5=41/2 equation:



2x^2-5=41/2
We move all terms to the left:
2x^2-5-(41/2)=0
We add all the numbers together, and all the variables
2x^2-5-(+41/2)=0
We get rid of parentheses
2x^2-5-41/2=0
We multiply all the terms by the denominator
2x^2*2-41-5*2=0
We add all the numbers together, and all the variables
2x^2*2-51=0
Wy multiply elements
4x^2-51=0
a = 4; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·4·(-51)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{51}}{2*4}=\frac{0-4\sqrt{51}}{8} =-\frac{4\sqrt{51}}{8} =-\frac{\sqrt{51}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{51}}{2*4}=\frac{0+4\sqrt{51}}{8} =\frac{4\sqrt{51}}{8} =\frac{\sqrt{51}}{2} $

See similar equations:

| -3.72+1.3x=x-5.4 | | 5x62=2x=4=0 | | 2/5(2x−15)=2 | | 3y-9=4y-3 | | 160=14x-22 | | 4x-3(5+2x)=13-8x | | 3x^2-271=29 | | 83+517=x | | 3(3q-2)=2-(2q+7) | | 83-517=x | | 1/5m-3=9 | | 5m+7=0 | | (16/25)^3x=(64/125)^4 | | 8+1/4t=8 | | 2x=43-2x | | 3a+8a=11 | | 0=1/2-y/2-2=0 | | 16-x=112 | | 2z/9+3=-8 | | 3x/5-1=x/2 | | 3x=55-8 | | (90-(1/2x+15))=2x-50 | | 55.675-14.6-24.9=t | | x-1+4x/2x-1=4 | | 4v-7=5 | | 2=m+6/10 | | (x-1)+(4x/2x-1)=4 | | 35=5u/4 | | 12-3x=4x-0 | | (x+30)+7=3x+21 | | 4y-y^2=12 | | x/7-8=3 |

Equations solver categories